岡山大学超電導応用研究室の研究内容と成果

岡山大学 学術研究院 環境生命自然科学学域 金 錫範

1. はじめに

当研究室では,3名のスタッフ(金教授,植田准 教授,井上助教)が超電導応用機器の開発研究を 行っている。研究に用いる超電導体は,高温超電 導バルク体と高温超電導線材および金属系超電導 線材であり,3次元アクチュエータ,非接触回転 機,小型 NMR/MRI 用マグネット,医療用サイク ロトロン,超高磁場 NMR および電気自動車用の 超電導大容量非接触給電システムなどを開発して いる。本誌では,当研究室の研究例として超電導 マグネットの高安定化手法として用いられている 無絶縁超電導コイルにおける接触抵抗評価方法と 高磁場用超電導マグネットおよび非接触給電シス テムの開発成果について簡単に紹介する。

2. 無絶縁超電導コイルの巻線間接触抵抗評価

REBCO 線材を用いた高温超電導コイルにおい ては、無絶縁巻線技術により高い熱的安定性が得 られることが明らかになり、高磁場発生用超電導 マグネット等に適用されることが検討されている。 一方、高温超電導マグネットの電気的・熱的安定 性を向上させるためには、巻線間接触抵抗とコイ ルのインダクタンスとのバランスが重要であるこ とが明らかになっており、巻線間の電気的接触抵

図1 LFAC 法による REBCO 無絶縁高温超電 導コイルの接触抵抗測定装置の概略図

図2 LFAC 法によって測定された REBCO 無 絶縁高温超電導コイルの接触抵抗(液体窒素 の複数冷却による接触抵抗の変化)

抗をより正確に計測する必要がある。そこで,我々 は, 交流通電 (low frequency alternating current: LFAC 法)による高温超電導コイルの巻線間接触 抵抗を測定する方法を提案し、その有効性につい て検討して来た¹⁾。提案した LFAC 法は,通電電 流の全てが径方向に流れたときのインピーダンス を評価することで接触抵抗を求める方法であり、 図1に測定回路の概念図を示し、測定結果の一例 を図2に示す。図2は、巻線張力0.5kgで作製し た REBCO 無絶縁試験コイルを液体窒素で複数回 冷却した際の等価接触抵抗の変化を示しており, 試験コイルの下部に設置した8個のピックアップ コイルによって接触抵抗の空間的な変化について も評価している。そして,提案した LFAC 法の有 効性等について数値解析による検討も行っている 2)。

3. 高磁場高温超電導マグネットの開発

α線核医学治療のためのα線放出 RI (211At) 製造用「高温超電導スケルトン・サイクロトロン (HTS-SC)」の開発を進めている。本装置では、 図3のように空芯の REBCO コイルシステムのみ で必要となる磁場を発生させることを目指してい る。鉄芯の磁化特性の非線形性を考慮する必要が ないため、出力エネルギーを変化させることがで き、PET 用 RI 製造等への応用など多機能化が期 待できる³⁾。当研究室では、遮蔽電流による不整 磁場解析、無絶縁巻線コイルの電磁力解析、クエ ンチ時のコイル挙動解析を主に実施している。

JST 未来社会創造事業の一環として,超高磁場

図 3 高温超電導スケルトン・サイクロトロ ン (HTS-SC)の概念図

NMR システムの開発を行っている。当研究室では, 特に内層 HTS マグネットの遮蔽電流磁場による 不整磁場と付加的電磁応力の解析を行っている。 図4に. 我々が開発した遮蔽電流・応力解析コー ドで解析した内層 HTS マグネットの遮蔽電流磁 場による応力と変形例を示す⁴⁾。解析では, REBCO テープの形状およびレイヤー巻(非含浸) を考慮して,巻線はすべて離散化されている。図 を見るとわかるように,遮蔽電流によりテープ幅 で不均一な応力が発生し,線材がチルトするよう 変形する。このような変形による劣化を防ぐ補強 構造やシミング設計のための不整磁場予測を行っ ている。

4. 超電導大容量非接触給電システムの開発

近年、地球温暖化対策の一環として、電気自動 車(EV)に注目が集まっている。その一方で, EV は 充電時間の長さに問題がある。例えば、有線式の 急速充電器(50 kW)を用いた場合,乗用車(60 kWh) への充電時間は約1時間かかり, バスやト ラック(320 kWh)への充電時間は約6時間かか る。これは、ガソリン車の給油時間(約5分)に 比べて非常に長く、EV の導入の妨げとなってい る。そのため、革新的な充電技術の開発が必須で ある。そこで当研究室では、安全に急速充電を実 現する 600 kW 級の超電導非接触給電システムを 検討している (図 5)。本システムは、地上側に高 温超電導(HTS: High Temperature Superconductor, 以下 HTS と略す)コイルおよび車両側にリッツ線 を用いた銅コイルを設置することで、数 kHz の高 周波磁界を発生させ, コイル間の電磁誘導によっ て急速充電を行う仕組みである。その一方で, HTS コイルを使用する場合, 交流通電時に電流の大き さや周波数に依存する交流損失の発生,また冷凍 機を駆動するための損失が問題となる可能性があ

図 4 内層 HTS マグネットの遮蔽電流磁場によ る応力と変形の例⁴⁾

図 5 提案する地上側超電導コイルを用いた大 容量非接触給電システムの概念図

図 6 提案する非接触給電システムの運転温度 に対する受電電力⁵⁾

る。そのため,提案する超電導コイルを用いた非 接触給電システムの有効性および設計指針を明確 にする必要がある。そこで本研究では,①地上側 HTSコイルおよび車両側銅コイルに適した導体開 発および低損失なコイル形状の検討,②大容量非 接触給電システムに適した回路構成の検討,③高 周波磁界の影響が少ない HTS コイルの冷却容器 の検討を行っている。これまでに,電磁場解析お よび等価回路解析により,提案する 100 kW 級非 接触給電システムの動作周波数帯を 10 kHz 以上 とすることで,車両側銅コイルを軽量化できるこ とがわかった。また,地上側 HTS コイルの運転温 度を下げることで非接触給電システムの大容量化 (387 kW @ 20 K)が可能であることを明らかに した(図 6)。

5. 参考文献

- S.B. Kim, et. al.: IEEE Trans. Appl. Supercond. 32(2022) 9001705
- T. Mato, et. al.: Supercond. Sci. Technol. 36(2023) 014005
- H. Ueda, et. al.: IEEE Trans. Appl. Supercond. 29(2019) 4101105
- K. Naito, et. al.: IEEE Trans. Appl. Supercond. 33(2023) 4300805
- Y. Inoue, et. al.: IEEE Trans. Appl. Supercond. 33(2023) 540060