プロトン照射した鉄カルコゲナイド薄膜の超伝導特性

関西学院大学 工学部 尾崎 壽紀

1. はじめに

鉄系超伝導体の中で最も単純な結晶構造を持つ 鉄カルコゲナイド超伝導体の一つである $FeSe_{1-x}Te_x(超伝導転移温度 T_c ~14 K)$ は、高い上部 臨界磁場(H_{c2})を示し、異方性(γ)が小さい。また、 良好な粒界特性を示すため応用に向けた薄膜作製 が行われている。パルスレーザー蒸着(Pulsed Laser Deposition: PLD)法で作製した $FeSe_{0.5}Te_{0.5}(FST)$ 薄 膜は、 CeO_2 中間層を用いることで、 $T_c^{onset} > 20 K$ 、 $T_c^{zero} > 18 K とバルク結晶より高い T_c を示し、4.2 K、$ $自己磁場において臨界電流密度 <math>J_c ~10^6 A/cm^2$ とい う高い値を示す。

超伝導材料技術を用いた産業応用の多くは、磁 場中で超伝導を利用するため、高磁場環境で安定 してより多くの(ゼロ抵抗)電流を流す必要がある。 磁場中で多くの電流を流すためには、薄膜中に欠 陥(非超伝導部分)を導入することで、超伝導体内 に侵入した磁束を"ピン止め"し、磁束の運動を 抑える必要がある。超伝導薄膜において、磁場中 J。を向上させる有効な手法として、イオン照射に よる欠陥導入が知られている。

本稿では、PLD 法を用いて作製した FST 薄膜(膜 厚約 100 nm)に、190 keV ^{1,2)}及び 1.5 MeV ³⁾の 2 種 類のエネルギーでプロトン(H⁺)照射した場合に形 成される結晶欠陥と照射前後の超伝導特性の変化 について紹介する。

2. 超伝導薄膜へのイオン照射

超伝導薄膜内に欠陥を導入し、磁場中超伝導特性 を高める手段として、イオン照射は有効である。 イオン照射による手法は、薄膜作製プロセスとは 独立に行えること、照射するイオン種、エネルギ 一、照射量等の照射条件を選択することにより欠 陥の形状、サイズ、密度等を容易に制御できるこ となどの利点がある。超伝導物質へのイオン照射 としては、これまで数百 MeV 以上の高エネルギー 重イオン照射による柱状欠陥が、ピン止め特性向 上に大きく寄与することが報告されてきた。しか しながら、高エネルギー重イオン照射による柱状 欠陥は磁場中ではJ。を向上させることができるが、 高照射量では過剰に欠陥が導入されることで非超 伝導部分の損傷が大きくなるため T。が低下し、そ の結果J。自体が減少してしまう。また、欠陥導入 には巨大な加速器を必要とし、かつ放射線による 危険性も伴う。一方、数 MeV 以下の比較的低いエ

ネルギーでのイオン照射では、点欠陥、もしくは 短冊状やクラスター状の欠陥を形成する。低エネ ルギーイオン照射は、放射化の可能性が低く、取 り扱いが容易な小型加速器を用いるため、比較的 容易にナノ構造欠陥を制御することができ、また 産業応用への展開も比較的容易である。

3. 190 keV プロトン照射

FST 薄膜を厚さ 1.5 μm の Al 箔で覆い、その上 からプロトン(エネルギー: 190 keV、照射量: 1×10¹⁵ ions/cm²)を照射した。1.5 μm 厚の Al 箔で覆 ったのは、照射したプロトンを FST 薄膜の膜中で 止めるためである。

図 1(a)にそれぞれプロトン照射前後の 0、5、9 T(*B*//*c*)における 20 K の電気抵抗(*R*(20 K))で規格 化した電気抵抗(*R*/*R*(20 K))の温度依存性を示す。 イオン照射前の FST 薄膜は $T_c^{zero} = 18.0$ K を示し た。興味深いのは、プロトンを照射することで $T_c^{zero} = 18.5$ K に上昇した点である。低エネルギー プロトン照射によって形成された結晶欠陥構造を 調べるために、高分解能透過型電子顕微鏡(Highsolution transmission electron microscopy: HRTEM) を用いて微細構造観察を行った。その結果、190 keV のプロトン照射後の FST 薄膜全体に、ランダ

図 1 190 keV プロトン照射前後の FeSe_{0.5}Te_{0.5} 薄膜の(a)*R-T* 曲線及び(b)*J*_e-B 特性.

ムな短冊状の欠陥が観察された。更に短冊状の欠 陥の近傍の格子縞が、短冊状の欠陥が形成される 方向に湾曲していることから、欠陥の周りに格子 歪が形成されていることがわかった。鉄カルコゲ ナイド超伝導体は、結晶格子の圧縮歪みが T_c上昇 の一因であることが知られており、190 keV のプ ロトン照射による格子歪みが T_c向上に寄与して いる可能性がある。

図 1(b)に 4.2 K おける未照射及び照射後の FST 薄膜の 34.5 T までの J_cの磁場依存性を示す。照射 した FST 薄膜は B//ab、B//c の両方向において、未 照射の FST 薄膜よりも大幅に J_c-B 特性が向上して いる。これは、短冊状の欠陥とその周りの格子歪 みが非常に有効なピン止め点として機能している ためと考えられる。

4. 1.5 MeV プロトン照射

Al 箔を介した 190 keV のプロトン照射の場合、 FST 薄膜の膜中でプロトンが止まるのに対し、1.5 MeV のプロトン照射では、プロトンが FST 薄膜を 貫通する。ここでは、FST 薄膜に、1.0×10¹⁶、3.5×10¹⁶、 7.0×10¹⁶ ions/cm²の3種類の照射量で1.5 MeVのプ ロトンを照射した結果について紹介する。図 2(a) にそれぞれの照射量における照射前後の T. の変 化を示す。1.0×10¹⁶ ions/cm² 照射した場合、照射前 後で FST 薄膜の T。は変化しなかったが、照射量増 加に伴い、照射後のTcの低下が大きくなることが 確認された。図 2(b)に照射前 FST 薄膜と照射エネ ルギー1.5 MeV、照射量 1.0×10¹⁶ ions/cm² でプロト ン照射した FST 薄膜の 4.2 K における J。の磁場依 存性を示す。1.0×10¹⁶ ions/cm² 照射した FST 薄膜 は、照射前 FST 薄膜と比較して 4.2 K での J。は H//abとH//cの両磁場方向に対して0-9Tの全磁場 領域で高い値を示した。H//cにおいては、J。は照 射前より自己磁場で約 40%向上し、磁場中で約 70%向上した。一方、H//ab においては、磁場の増 加に伴い、照射後のJ。の向上率は小さくなり、9T では、約5%の向上まで低下した。この結果から、 1.5 MeV プロトン照射によって形成された欠陥は、 特にH//c方向にピン止め点の役割を果たしている と考えられる。H//ab 方向において、磁場の増加 に伴い、照射後のJ_cの向上率が低下したのは、薄 膜表面に垂直に照射することで超伝導電流が流れ る層状構造が損傷したためと考えられる。1.5 MeV のプロトン照射によって形成された欠陥を 調べるために TEM による微細構造観察を行った。 その結果、プロトン照射によってできたと考えら れる格子の歪んだ領域が観察された。このような

5 nm 程度のサイズの格子が歪んだ部分が照射欠 陥として磁束ピン止め点として働いていると考えられる。

図 2 1.5 MeV プロトン照射前後の FeSe_{0.5}Te_{0.5}薄 膜の(a)T_cの照射量依存性及び(b)J_c-B 特性.

5. まとめ

FST 薄膜に、190 keV 及び 1.5 MeV の 2 種類のエ ネルギーでプロトン照射した場合に形成される結 晶欠陥と照射前後の超伝導特性について紹介した。 プロトンが薄膜内で止まるエネルギー(190 keV) で照射した FST 薄膜は、照射後 T_cが向上したが、 薄膜を貫通するエネルギー(1.5 MeV)で照射した 薄膜においては、本実験で実施した照射量では、 T_cの向上は確認できなかった。また、両エネルギ ーにおいて、照射後の磁場中 J_cは向上したが、磁 場中特性の振る舞いには違いがあった。これは、 形成された照射欠陥が起因している可能性がある。 これらの結果から、超伝導特性の振る舞いに違い はあるが、低エネルギープロトン照射は FST 薄膜 の磁場中臨界電流特性を向上させるために有効で あると考えられる。

6. 参考文献

1)T. Ozaki, et al.: Nat. Commun. 7 (2016) 13036 2)尾崎壽紀ら:低温工学 **52** (2017) 456-464 3)T. Ozaki, et al.: Quantum Beam Sci. **5** (2021)